Detailed steps for training a neural editor

Kelvin Guu, Tatsunori Hashimoto, Yonatan Oren, Percy Liang

August 19, 2018

1 Introduction

- This document accompanies "Generating Sentences by Editing Prototypes]'.
- It provides more detailed instructions for training a neural editor, and uses all the same notation
- Implementation available on GitHub at: https://github.com/kelvinguu/neural-editor
- Reproducible experiments available on CodaLab at: https://bit.ly/2rHsWAX
- Spot an error in this document? Please let us know at kguu@google.com

2 Training objective

- Let $\Theta=\left(\Theta_{p}, \Theta_{q}\right)$ be the full set of parameters, where:
$-\Theta_{p}$ is the set of parameters for the neural editor, $p_{\text {edit }}\left(x \mid x^{\prime}, z\right)$. This includes:
* The parameters of the sequence-to-sequence encoder and decoder
* A set of input word vectors (used by the encoder)
* A set of output word vectors (used by the decoder in its softmax layer)
* (Optionally, the input and output word vectors can be tied)
$-\Theta_{q}$ is the set of parameters for the inverse neural editor, $q\left(z \mid x, x^{\prime}\right)$
* This is just a set of word vectors, as described in Section 3.4 of "Generating Sentences by Editing Prototypes"
* (Optionally, these word vectors can be tied with the input/output word vectors of the editor)
- The overall training objective is:

$$
\begin{aligned}
\mathcal{O}(\Theta) & =\sum_{x \in \mathcal{X}} \sum_{x^{\prime} \in \mathcal{N}(x)} \operatorname{ELBO}\left(x, x^{\prime}\right) \\
\operatorname{ELBO}\left(x, x^{\prime}\right) & =\mathbb{E}_{z \sim q\left(z \mid x, x^{\prime}\right)}\left[\log p_{\text {edit }}\left(x \mid x^{\prime}, z\right)\right]-\operatorname{KL}\left(q\left(z \mid x, x^{\prime}\right) \| p(z)\right)
\end{aligned}
$$

3 Optimization

- We will use stochastic gradient ascent to maximize the objective.

1. Sample a sentence x uniformly from \mathcal{X}.
2. Sample a prototype x^{\prime} uniformly from $\mathcal{N}(x)$.

- For speed, $\mathcal{N}(x)$ should be precomputed.

3. Compute $g=\left(g_{p}, g_{q}\right)$, an unbiased estimate of $\nabla_{\Theta} \operatorname{ELBO}\left(x, x^{\prime}\right)$ (see below for definitions of g_{p} and g_{q})
(a) Sample an edit vector, $z \sim q\left(z \mid x, x^{\prime}\right)$:

- Compute $f=f\left(x, x^{\prime}\right)$ as described in Section 3.4 of "Generating Sentences by Editing Prototypes".
- Define $f_{\text {norm }}=\|f\|_{2}$ and $f_{\text {dir }}=f / f_{\text {norm }}$.
- Define $\tilde{f}_{\text {norm }}=\min \left(f_{\text {norm }}, 10-\epsilon\right)$.
- Sample $z_{\text {dir }} \sim \operatorname{vMF}\left(f_{\text {dir }}, \kappa\right)$.
* This must be done using a reparameterization trick, which introduces:
- A set of auxiliary random variables, $\alpha=(\omega, v)$
- A deterministic function h, such that $z_{\text {dir }}=h\left(f_{\text {dir }}, \alpha\right)$
* See the next section for details.
- Sample $z_{\text {norm }} \sim \operatorname{Unif}\left[\tilde{f}_{\text {norm }}, \tilde{f}_{\text {norm }}+\epsilon\right]$.
* This is done using the following (very simple) reparameterization trick:
- Sample auxiliary random variable $o \sim \operatorname{Unif}[0, \epsilon]$
- Define $z_{\text {norm }}=\tilde{f}_{\text {norm }}+o$
- Define $z=z_{\text {dir }} \cdot z_{\text {norm }}$
(b) Compute $g_{p}=\nabla_{\Theta_{p}} \log p_{\text {edit }}\left(x \mid x^{\prime}, z\right)$
- g_{p} is computed using standard backpropagation through the editor, treating x, x^{\prime} and z as constants.
(c) Compute $g_{q}=\nabla_{\Theta_{q}} \log p_{\text {edit }}\left(x \mid x^{\prime}, z\right)$
- g_{q} is computed using standard backpropagation through the editor as well as through $z_{\text {norm }}=\tilde{f}_{\text {norm }}+o$ and $z_{\text {dir }}=h\left(f_{\text {dir }}, \alpha\right)$, treating x, x^{\prime}, o and α as constants.
- Note that $z_{\text {norm }}$ and $z_{\text {dir }}$ are not treated as constants, but instead as functions that we backpropagate through. See the next section for the functional form of h.
(d) Define $g=\left(g_{p}, g_{q}\right)$

4. Update parameters
$-\Theta \leftarrow \Theta+\lambda g$ where λ is some learning rate.

- Alternatively, this step could be replaced by a more sophisticated learning rule such as Adam, RMSprop, etc.

4 Sampling from a von-Mises Fisher distribution

- We would like to sample a vector $z_{\text {dir }} \in \mathbb{R}^{p}$ from vMF (μ, κ), a von-Mises Fisher distribution with direction $\mu \in \mathcal{S}^{p-1}$ (a point on the unit sphere in p-dimensional space) and concentration $\kappa \in \mathbb{R}$ (must be ≥ 0).
- We will introduce a set of auxiliary random variables, $\alpha=(\omega, v)$
- ω is a random scalar, with distribution $p(\omega)$ defined as:

$$
p(\omega)= \begin{cases}C \cdot e^{\kappa \omega}\left(1-\omega^{2}\right)^{(p-3) / 2} & \omega \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

* $C=\left(\frac{\kappa}{2}\right)^{p / 2-1}\left\{\Gamma\left(\frac{p-1}{2}\right) \Gamma\left(\frac{1}{2}\right) I_{(p-1) / 2}(\kappa)\right\}^{-1}$ is a normalization constant.
* Γ is the gamma function.
* $I_{n}(\kappa)$ is the modified Bessel function of the first kind.
* No exact method for sampling from $p(\omega)$ is currently known. See the next section for a rejection sampling strategy for sampling from $p(\omega)$.
- v is a random vector in \mathbb{R}^{p-1} with distribution $p(v)$ defined to be the uniform distribution on the $(p-2)$ sphere, $\mathcal{S}^{p-2}=\left\{x \in \mathbb{R}^{p-1}: d(x, \mathbf{0})=1\right\}$.
* This can be sampled by simply drawing a multivariate normal random vector and normalizing it to length 1, but there are other more efficient approaches.
- Define $p(\alpha)=p(\omega) p(v)$ (implying that ω and v are independent)
- We can now sample $z_{\text {dir }} \sim \operatorname{vMF}(\mu, \kappa)$ as follows:

1. Sample $\omega \sim p(\omega)$
2. Sample $v \sim p(v)$
3. Define $s=\left(\omega ; v^{\top} \cdot \sqrt{1-\omega^{2}}\right)^{\top}$
4. Construct a Householder reflection matrix, R

- Let $e_{1}=\left[\begin{array}{llll}1 & 0 & 0 & \ldots\end{array}\right]$
- Define $r=\left(e_{1}-\mu\right) /\left\|e_{1}-\mu\right\|$
- Let $R=I-2 r r^{\top}$, where I is the identity matrix
- Define $z_{\text {dir }}=R s$
* R essentially reflects s across the hyperplane that lies between μ and e_{1}
- For the sake of clarity, we can also write these steps in a form that more clearly illustrates how $z_{\text {dir }}$ is a function of μ and α :

$$
\begin{aligned}
\alpha & \sim p(\alpha) \\
z_{\mathrm{dir}} & =h(\mu, \alpha)=\left(I-2\left[\left(e_{1}-\mu\right) /\left\|e_{1}-\mu\right\|\right]\left[\left(e_{1}-\mu\right) /\left\|e_{1}-\mu\right\|\right]^{\top}\right)\left(\omega ; v^{\top} \cdot \sqrt{1-\omega^{2}}\right)^{\top}
\end{aligned}
$$

5 Sampling $p(\omega)$ using rejection sampling

- To draw a sample ω from $p(\omega)$, we will utilize the following rejection sampling algorithm:

1. Define $a=\frac{(p-1)+2 \kappa+\sqrt{4 \kappa^{2}+(p-1)^{2}}}{4}$
2. Define $b=\frac{-2 \kappa+\sqrt{4 \kappa^{2}+(p-1)^{2}}}{p-1}$
3. Define $d=\frac{4 a b}{1+b}-(p-1) \ln (p-1)$
4. Repeat until acceptance criterion is satisfied
(a) Sample $\beta \sim \operatorname{Beta}\left(\frac{p-1}{2}, \frac{p-1}{2}\right)$
(b) Propose $\omega=\frac{1-(1+b) \beta}{1-(1-b) \beta}$
(c) Define $t=\frac{2 a b}{1-(1-b) \beta}$, and sample $u \sim \operatorname{Unif}[0,1]$
(d) If $(p-1) \ln (t)-t+d \geq \ln (u)$, accept. Otherwise, start over.

- Note:
- This rejection sampling algorithm comes from Davidson 2018.
- Davidson 2018 uses the algorithm of Ulrich 1984, but corrects two typos that existed in the original algorithm (Algorithm VM):
* The proposal for ω was incorrectly defined to be $\omega=\frac{1-(1+b) \beta}{1+(1-b) \beta}$
* t was incorrectly defined to be $t=\frac{2 a b}{1+(1-b) \beta}$
- For an alternative method of sampling ω, see Wood 1994.

6 References

- Hyperspherical Variational Auto-encoders (Davidson et al 2018)
- Uses Ulrich's approach, but corrects two typos.
- Directional Statistics (Mardia and Jupp 1999)
- page 172, Section 9.3.2, "Simulation"
- Does not give the algorithm for sampling ω
- Method of combining v and ω appears to be wrong: in particular, v is the wrong dimension (p rather than $p-1$), and v and ω are combined incorrectly (addition rather than concatenation)
- Math Stack Exchange
- Claims to be the Ulrich-Wood algorithm, but the implementation is incorrect: appears to make the same mistake made in "Directional Statistics" (Mardia and Jupp 1999)
- Simulation of the von Mises Fisher distribution (Wood 1994)
- Behind a paywall
- Points out that there are errors in the original Ulrich 1984 paper
- Proposes a different rejection sampling scheme
- Ulrich 1984
- The original paper on sampling from a von Mises Fisher distribution
- Contains two typos in the sampling algorithm

