Detailed steps for training a neural editor

Kelvin Guu, Tatsunori Hashimoto, Yonatan Oren, Percy Liang

August 19, 2018

1 Introduction

- This document accompanies "Generating Sentences by Editing Prototypes".
- It provides more detailed instructions for training a neural editor, and uses all the same notation
- Implementation available on GitHub at: https://github.com/kelvinguu/neural-editor
- Reproducible experiments available on CodaLab at: https://bit.ly/2rHsWAX
- Spot an error in this document? Please let us know at kguu@google.com

2 Training objective

- Let $\Theta = (\Theta_p, \Theta_q)$ be the full set of parameters, where:
 - Θ_p is the set of parameters for the neural editor, $p_{\text{edit}}(x \mid x', z)$. This includes:
 - * The parameters of the sequence-to-sequence encoder and decoder
 - * A set of input word vectors (used by the encoder)
 - * A set of output word vectors (used by the decoder in its softmax layer)
 - * (Optionally, the input and output word vectors can be tied)
 - $-\Theta_q$ is the set of parameters for the inverse neural editor, $q(z \mid x, x')$
 - * This is just a set of word vectors, as described in Section 3.4 of "Generating Sentences by Editing Prototypes"
 - * (Optionally, these word vectors can be tied with the input/output word vectors of the editor)
- The overall training objective is:

$$\begin{array}{lll} \mathcal{O}\left(\Theta\right) & = & \displaystyle\sum_{x \in \mathcal{X}} \, \sum_{x' \in \mathcal{N}(x)} \mathrm{ELBO}\left(x, x'\right) \\ \mathrm{ELBO}\left(x, x'\right) & = & \displaystyle\mathbb{E}_{z \sim q(z \mid x, x')} \left[\log p_{\mathrm{edit}}\left(x \mid x', z\right)\right] - \mathrm{KL}\left(q\left(z \mid x, x'\right) \| p\left(z\right)\right) \end{array}$$

3 Optimization

- We will use stochastic gradient ascent to maximize the objective.
 - 1. Sample a sentence x uniformly from \mathcal{X} .
 - 2. Sample a prototype x' uniformly from $\mathcal{N}(x)$.
 - For speed, $\mathcal{N}(x)$ should be precomputed.
 - 3. Compute $g = (g_p, g_q)$, an unbiased estimate of $\nabla_{\Theta} \text{ELBO}(x, x')$ (see below for definitions of g_p and g_q)

- (a) Sample an edit vector, $z \sim q(z \mid x, x')$:
 - Compute f = f(x, x') as described in Section 3.4 of "Generating Sentences by Editing Prototypes".
 - Define $f_{\text{norm}} = ||f||_2$ and $f_{\text{dir}} = f/f_{\text{norm}}$.
 - Define $f_{\text{norm}} = \min(f_{\text{norm}}, 10 \epsilon).$
 - Sample $z_{\rm dir} \sim \rm vMF(f_{\rm dir}, \kappa)$.
 - * This must be done using a reparameterization trick, which introduces:
 - · A set of auxiliary random variables, $\alpha = (\omega, v)$
 - A deterministic function h, such that $z_{dir} = h(f_{dir}, \alpha)$
 - * See the next section for details.

- Sample
$$z_{\text{norm}} \sim \text{Unif}\left[f_{\text{norm}}, f_{\text{norm}} + \epsilon\right]$$

- * This is done using the following (very simple) reparameterization trick:
 - · Sample auxiliary random variable $o \sim \mathrm{Unif}\left[0,\epsilon\right]$
 - Define $z_{\text{norm}} = f_{\text{norm}} + o$
- Define $z = z_{dir} \cdot z_{norm}$
- (b) Compute $g_p = \nabla_{\Theta_p} \log p_{\text{edit}} (x \mid x', z)$
 - g_p is computed using standard backpropagation through the editor, treating x, x' and z as constants.
- (c) Compute $g_q = \nabla_{\Theta_q} \log p_{\text{edit}} (x \mid x', z)$
 - $-g_q$ is computed using standard backpropagation through the editor **as well as** through $z_{\text{norm}} = \tilde{f}_{\text{norm}} + o$ and $z_{\text{dir}} = h(f_{\text{dir}}, \alpha)$, treating x, x', o and α as constants.
 - Note that z_{norm} and z_{dir} are **not** treated as constants, but instead as functions that we backpropagate through. See the next section for the functional form of h.
- (d) Define $g = (g_p, g_q)$
- 4. Update parameters
 - $\Theta \leftarrow \Theta + \lambda g$ where λ is some learning rate.
 - Alternatively, this step could be replaced by a more sophisticated learning rule such as Adam, RMSprop, etc.

4 Sampling from a von-Mises Fisher distribution

- We would like to sample a vector $z_{\text{dir}} \in \mathbb{R}^p$ from vMF (μ, κ) , a von-Mises Fisher distribution with direction $\mu \in S^{p-1}$ (a point on the unit sphere in *p*-dimensional space) and concentration $\kappa \in \mathbb{R}$ (must be ≥ 0).
- We will introduce a set of auxiliary random variables, $\alpha = (\omega, v)$
 - $-\omega$ is a random scalar, with distribution $p(\omega)$ defined as:

$$p(\omega) = \begin{cases} C \cdot e^{\kappa \omega} (1 - \omega^2)^{(p-3)/2} & \omega \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}$$

- * $C = \left(\frac{\kappa}{2}\right)^{p/2-1} \left\{ \Gamma\left(\frac{p-1}{2}\right) \Gamma\left(\frac{1}{2}\right) I_{(p-1)/2}(\kappa) \right\}^{-1}$ is a normalization constant.
- * Γ is the gamma function.
- * $I_n(\kappa)$ is the modified Bessel function of the first kind.
- * No exact method for sampling from $p(\omega)$ is currently known. See the next section for a rejection sampling strategy for sampling from $p(\omega)$.

- v is a random vector in \mathbb{R}^{p-1} with distribution p(v) defined to be the uniform distribution on the (p-2) sphere, $\mathcal{S}^{p-2} = \{x \in \mathbb{R}^{p-1} : d(x, \mathbf{0}) = 1\}.$
 - * This can be sampled by simply drawing a multivariate normal random vector and normalizing it to length 1, but there are other more efficient approaches.
- Define $p(\alpha) = p(\omega) p(v)$ (implying that ω and v are independent)
- We can now sample $z_{\rm dir} \sim v {\rm MF}(\mu, \kappa)$ as follows:
 - 1. Sample $\omega \sim p(\omega)$
 - 2. Sample $v \sim p(v)$
 - 3. Define $s = (\omega; v^{\top} \cdot \sqrt{1 \omega^2})^{\top}$
 - 4. Construct a Householder reflection matrix, ${\cal R}$
 - $\operatorname{Let} e_1 = \begin{bmatrix} 1 & 0 & 0 & \dots \end{bmatrix}$
 - Define $r = (e_1 \mu) / ||e_1 \mu||$
 - Let $R = I 2rr^{\top}$, where I is the identity matrix
 - Define $z_{dir} = Rs$
 - * R essentially reflects s across the hyperplane that lies between μ and e_1
- For the sake of clarity, we can also write these steps in a form that more clearly illustrates how z_{dir} is a function of μ and α :

$$\alpha \sim p(\alpha) z_{\text{dir}} = h(\mu, \alpha) = \left(I - 2 \left[(e_1 - \mu) / \|e_1 - \mu\| \right] \left[(e_1 - \mu) / \|e_1 - \mu\| \right]^\top \right) \left(\omega; \ v^\top \cdot \sqrt{1 - \omega^2} \right)^\top$$

5 Sampling $p(\omega)$ using rejection sampling

- To draw a sample ω from $p(\omega)$, we will utilize the following rejection sampling algorithm:
 - 1. Define $a = \frac{(p-1)+2\kappa+\sqrt{4\kappa^2+(p-1)^2}}{4}$

2. Define
$$b = \frac{-2\kappa + \sqrt{4\kappa^2 + (p-1)^2}}{p-1}$$

- 3. Define $d = \frac{4ab}{1+b} (p-1)\ln(p-1)$
- 4. Repeat until acceptance criterion is satisfied
 - (a) Sample $\beta \sim \text{Beta}\left(\frac{p-1}{2}, \frac{p-1}{2}\right)$
 - (b) Propose $\omega = \frac{1-(1+b)\beta}{1-(1-b)\beta}$
 - (c) Define $t = \frac{2ab}{1-(1-b)\beta}$, and sample $u \sim \text{Unif}[0,1]$
 - (d) If $(p-1)\ln(t) t + d \ge \ln(u)$, accept. Otherwise, start over.
- Note:
 - This rejection sampling algorithm comes from Davidson 2018.
 - Davidson 2018 uses the algorithm of Ulrich 1984, but corrects two typos that existed in the original algorithm (Algorithm VM):
 - * The proposal for ω was incorrectly defined to be $\omega = \frac{1-(1+b)\beta}{1+(1-b)\beta}$
 - * t was incorrectly defined to be $t = \frac{2ab}{1+(1-b)\beta}$
 - For an alternative method of sampling ω , see Wood 1994.

6 References

- Hyperspherical Variational Auto-encoders (Davidson et al 2018)
 - Uses Ulrich's approach, but corrects two typos.
- Directional Statistics (Mardia and Jupp 1999)
 - page 172, Section 9.3.2, "Simulation"
 - Does not give the algorithm for sampling ω
 - Method of combining v and ω appears to be wrong: in particular, v is the wrong dimension (p rather than p-1), and v and ω are combined incorrectly (addition rather than concatenation)
- Math Stack Exchange
 - Claims to be the Ulrich-Wood algorithm, but the implementation is incorrect: appears to make the same mistake made in "Directional Statistics" (Mardia and Jupp 1999)
- Simulation of the von Mises Fisher distribution (Wood 1994)
 - Behind a paywall
 - Points out that there are errors in the original Ulrich 1984 paper
 - Proposes a different rejection sampling scheme
- Ulrich 1984
 - The original paper on sampling from a von Mises Fisher distribution
 - Contains two typos in the sampling algorithm