
Detailed steps for training a neural editor

Kelvin Guu, Tatsunori Hashimoto, Yonatan Oren, Percy Liang

August 19, 2018

1 Introduction
• This document accompanies “Generating Sentences by Editing Prototypes”.

• It provides more detailed instructions for training a neural editor, and uses all the same notation

• Implementation available on GitHub at: https://github.com/kelvinguu/neural-editor

• Reproducible experiments available on CodaLab at: https://bit.ly/2rHsWAX

• Spot an error in this document? Please let us know at kguu@google.com

2 Training objective
• Let Θ = (Θp,Θq) be the full set of parameters, where:

– Θp is the set of parameters for the neural editor, pedit (x | x′, z). This includes:
∗ The parameters of the sequence-to-sequence encoder and decoder
∗ A set of input word vectors (used by the encoder)
∗ A set of output word vectors (used by the decoder in its softmax layer)
∗ (Optionally, the input and output word vectors can be tied)

– Θq is the set of parameters for the inverse neural editor, q (z | x, x′)
∗ This is just a set of word vectors, as described in Section 3.4 of “Generating Sentences by

Editing Prototypes”
∗ (Optionally, these word vectors can be tied with the input/output word vectors of the editor)

• The overall training objective is:

O (Θ) =
∑
x∈X

∑
x′∈N (x)

ELBO (x, x′)

ELBO (x, x′) = Ez∼q(z|x,x′) [log pedit (x | x′, z)]−KL (q (z | x, x′) ‖p (z))

3 Optimization
• We will use stochastic gradient ascent to maximize the objective.

1. Sample a sentence x uniformly from X .
2. Sample a prototype x′ uniformly from N (x).

– For speed, N (x) should be precomputed.

3. Compute g = (gp, gq), an unbiased estimate of ∇ΘELBO (x, x′) (see below for definitions of gp
and gq)

1

https://arxiv.org/abs/1709.08878


(a) Sample an edit vector, z ∼ q (z | x, x′):
– Compute f = f (x, x′) as described in Section 3.4 of “Generating Sentences by Editing

Prototypes”.
– Define fnorm = ‖f‖2 and fdir = f/fnorm.
– Define f̃norm = min (fnorm, 10− ε).
– Sample zdir ∼ vMF (fdir, κ).
∗ This must be done using a reparameterization trick, which introduces:
· A set of auxiliary random variables, α = (ω, v)

· A deterministic function h, such that zdir = h (fdir, α)

∗ See the next section for details.
– Sample znorm ∼ Unif

[
f̃norm, f̃norm + ε

]
.

∗ This is done using the following (very simple) reparameterization trick:
· Sample auxiliary random variable o ∼ Unif [0, ε]
· Define znorm = f̃norm + o

– Define z = zdir · znorm

(b) Compute gp = ∇Θp
log pedit (x | x′, z)

– gp is computed using standard backpropagation through the editor, treating x, x′ and z
as constants.

(c) Compute gq = ∇Θq
log pedit (x | x′, z)

– gq is computed using standard backpropagation through the editor as well as through
znorm = f̃norm + o and zdir = h (fdir, α) , treating x, x′, o and α as constants.

– Note that znorm and zdir are not treated as constants, but instead as functions that we
backpropagate through. See the next section for the functional form of h.

(d) Define g = (gp, gq)

4. Update parameters

– Θ← Θ + λg where λ is some learning rate.
– Alternatively, this step could be replaced by a more sophisticated learning rule such as Adam,

RMSprop, etc.

4 Sampling from a von-Mises Fisher distribution
• We would like to sample a vector zdir ∈ Rp from vMF (µ, κ), a von-Mises Fisher distribution with

direction µ ∈ Sp−1 (a point on the unit sphere in p-dimensional space) and concentration κ ∈ R (must
be ≥ 0).

• We will introduce a set of auxiliary random variables, α = (ω, v)

– ω is a random scalar, with distribution p (ω) defined as:

p (ω) =

{
C · eκω

(
1− ω2

)(p−3)/2
ω ∈ [−1, 1]

0 otherwise

∗ C =
(
κ
2

)p/2−1 {
Γ
(
p−1

2

)
Γ
(

1
2

)
I(p−1)/2 (κ)

}−1
is a normalization constant.

∗ Γ is the gamma function.
∗ In (κ) is the modified Bessel function of the first kind.
∗ No exact method for sampling from p (ω) is currently known. See the next section for a

rejection sampling strategy for sampling from p (ω).

2



– v is a random vector in Rp−1 with distribution p (v) defined to be the uniform distribution on the
(p− 2) sphere, Sp−2 =

{
x ∈ Rp−1 : d (x,0) = 1

}
.

∗ This can be sampled by simply drawing a multivariate normal random vector and normalizing
it to length 1, but there are other more efficient approaches.

• Define p (α) = p (ω) p (v) (implying that ω and v are independent)

• We can now sample zdir ∼ vMF (µ, κ) as follows:

1. Sample ω ∼ p (ω)

2. Sample v ∼ p (v)

3. Define s =
(
ω; v> ·

√
1− ω2

)>
4. Construct a Householder reflection matrix, R

– Let e1 =
[
1 0 0 . . .

]
– Define r = (e1 − µ) /‖e1 − µ‖
– Let R = I − 2rr>, where I is the identity matrix

– Define zdir = Rs

∗ R essentially reflects s across the hyperplane that lies between µ and e1

• For the sake of clarity, we can also write these steps in a form that more clearly illustrates how zdir is
a function of µ and α:

α ∼ p (α)

zdir = h (µ, α) =
(
I − 2 [(e1 − µ) /‖e1 − µ‖] [(e1 − µ) /‖e1 − µ‖]>

)(
ω; v> ·

√
1− ω2

)>
5 Sampling p (ω) using rejection sampling
• To draw a sample ω from p (ω), we will utilize the following rejection sampling algorithm:

1. Define a =
(p−1)+2κ+

√
4κ2+(p−1)2

4

2. Define b =
−2κ+

√
4κ2+(p−1)2

p−1

3. Define d = 4ab
1+b − (p− 1) ln (p− 1)

4. Repeat until acceptance criterion is satisfied

(a) Sample β ∼ Beta
(
p−1

2 , p−1
2

)
(b) Propose ω = 1−(1+b)β

1−(1−b)β

(c) Define t = 2ab
1−(1−b)β , and sample u ∼ Unif [0, 1]

(d) If (p− 1) ln (t)− t+ d ≥ ln (u), accept. Otherwise, start over.

• Note:

– This rejection sampling algorithm comes from Davidson 2018.

– Davidson 2018 uses the algorithm of Ulrich 1984, but corrects two typos that existed in the original
algorithm (Algorithm VM):

∗ The proposal for ω was incorrectly defined to be ω = 1−(1+b)β
1+(1−b)β

∗ t was incorrectly defined to be t = 2ab
1+(1−b)β

– For an alternative method of sampling ω, see Wood 1994.

3



6 References
• Hyperspherical Variational Auto-encoders (Davidson et al 2018)

– Uses Ulrich’s approach, but corrects two typos.

• Directional Statistics (Mardia and Jupp 1999)

– page 172, Section 9.3.2, “Simulation”

– Does not give the algorithm for sampling ω

– Method of combining v and ω appears to be wrong: in particular, v is the wrong dimension (p
rather than p− 1), and v and ω are combined incorrectly (addition rather than concatenation)

• Math Stack Exchange

– Claims to be the Ulrich-Wood algorithm, but the implementation is incorrect: appears to make
the same mistake made in “Directional Statistics” (Mardia and Jupp 1999)

• Simulation of the von Mises Fisher distribution (Wood 1994)

– Behind a paywall

– Points out that there are errors in the original Ulrich 1984 paper

– Proposes a different rejection sampling scheme

• Ulrich 1984

– The original paper on sampling from a von Mises Fisher distribution

– Contains two typos in the sampling algorithm

4

https://arxiv.org/pdf/1804.00891.pdf
https://onlinelibrary-wiley-com.stanford.idm.oclc.org/doi/pdf/10.1002/9780470316979
https://math.stackexchange.com/questions/1326492/sampling-from-the-von-mises-fisher-distribution
https://www.tandfonline.com/doi/abs/10.1080/03610919408813161
https://www.jstor.org/stable/pdf/2347441.pdf?refreqid=excelsior%3Ad0381eef6def213a9cc92838ca92eff6

	Introduction
	Training objective
	Optimization
	Sampling from a von-Mises Fisher distribution
	Sampling p() using rejection sampling
	References

